2007 Vol. 9, No. 20 4013-4016

Enantioselective Synthesis of (—)-Platensimycin Oxatetracyclic Core by Using an Intramolecular Diels—Alder Reaction

Arun K. Ghosh* and Kai Xi

Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907

akghosh@purdue.edu

Received July 25, 2007

ABSTRACT

An enantioselective route to the oxatetracyclic core of (-)-platensimycin (1) has been investigated by using an intramolecular Diels-Alder reaction as the key step. The thermal reaction of *E/Z* mixture (1:1) provided oxatetracyclic core 2 from the *E*-diene and the *Z*-diene was recovered unchanged. The Diels-Alder substrate was conveniently assembled in optically active form with use of (*S*)-carvone as the starting material.

Antibiotic resistance has become an increasingly alarming public health concern worldwide. The problem continues to worsen as first-line antibiotic drugs are becoming less effective due to the emergence of a range of lethal resistant strains.¹ This raises serious issues with respect to future treatments and prevention of infectious diseases. Consequently, discovery and development of new antibiotics with a novel mechanism of action are critically important. In 2006, a novel class of antibiotic, platensimycin (1, Figure 1), was isolated from a strain of *Streptomyces platensis* by a Merck research group.^{2,3} Platensimycin shows strong, broadspectrum Gram positive antibacterial activity. This compound can selectively inhibit bacterial cellular lipid biosynthesis by

The structure of platensimycin was elucidated by use of 2-D NMR techniques. The X-ray crystallographic analysis of the bromo derivative further confirmed its relative and absolute stereochemistry. Platensimycin consists of a hydrophobic oxatetracyclic core and a polar 3-amino-2,4-dihydroxybenzoic acid side chain. The chemistry and biology of platensimycin have logically attracted considerable interest in its synthesis and structure—activity studies. The first total synthesis of racemic platensimycin^{4a} and subsequently asymmetric synthesis of (—)-platensimycin^{4b} were reported by

targeting the β -ketoacyl-acyl-carrier-protein synthase I/II (FabF/B) in the synthetic pathway of fatty acids which are important components of cell membranes and cell envelopes.³ The discovery of platensimycin and its novel mechanism of action have identified a new promising target for treatment of bacterial infections.

⁽¹⁾ Walsh, C. Antibiotics: actions, origins, resistance; ASM Press: Washington, DC, 2003.

⁽²⁾ Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A. Ä.; Tormo, J. R.; Enilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Chmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. *Nature* 2006, 441, 358.

^{(3) (}a) Singh, S. B.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K. B.; Zhang, C.; Zink, D. L.; Tsou, N. N.; Ball, R. G.; Basilio, A.; Genilloud, O.; Diez, M. T.; Vicente, F.; Pelaez, F.; Young, K.; Wang, J. J. Am Chem. Soc. 2006, 128, 11916. (b) Häbich, D.; von Nussbaum, F. ChemMedChem 2006, 1, 951

Figure 1. Retrosynthetic analysis of (-)-platensimycin.

Nicolaou and co-workers. They reported the synthesis of its analogue adamantaplatensimycin recently. 4c Two other racemic syntheses 5a,b and a related structure of the oxatetracyclic core have also been reported. 5c The above-mentioned syntheses utilized an intramolecular etherification reaction to construct the hydrophobic core of platensimycin. Very recently, Yamamoto and co-workers reported an elegant enantioselective route to (—)-platensimycin using an intramolecular Robinson annulation as the key step. 5 This report has prompted us to publish our preliminary results toward the total synthesis of (—)-platensimycin.

Our strategy, however, is based upon an intramolecular Diels-Alder reaction of an appropriately functionalized substrate to construct the oxatetracyclic core in a stereocontrolled manner. As shown in Figure 1, the oxatetracyclic core 2 can be formed by an intramolecular Diels—Alder reaction of substrate 3. For preliminary investigation, we planned to examine a Diels-Alder reaction with the mixture of E/Zisomers as shown in 3. In principle, both expected products can be converted to the oxatetracyclic core enone derivative. Diels-Alder substrate 3 can be synthesized from ketone 4 by constructing the diene and dienophile moiety at each side of the bicyclic ketone 4. Ketone 4 can be derived from the lactone 5 by olefination of the lactone carbonyl followed by hydroboration of the resulting olefin to set up the required stereocenter. Lactone 5 will be synthesized starting from commercially available (+)-carvone 6.

Scheme 1. Synthesis of Ketone 5

As shown in Scheme 1, commercially available (+)carvone 6 was transformed to the known lactone 5 by slight modification of a literature procedure.7 Our initial Baeyer-Villiger oxidation of lactone 5 with mCPBA proceeded very slowly and the corresponding oxidation product was obtained in poor yield (20%). However, lactone 5 was successfully transformed into the corresponding ester in 89% yield by using trifluoroperoxyacetic acid formed in situ from trifluoroacetic anhydride and the urea hydrogen peroxide complex (UHP) at 0 °C for 5 h.8 Saponification of the resulting ester furnished alcohol 7 in 90% yield. Protection of the alcohol 7 with TBSCl gave the silvl ether in quantitative yield. The lactone was subjected to the Petasis olefination9 with Cp₂-TiMe₂ in toluene at 90 °C to provide the corresponding enol ether. Hydroboration of the resulting enol ether with 9-BBN provided the desired primary alcohol 8 and its diastereomer **9** as a 2:1 mixture of diastereomers in 81% yield. The diastereomers were separated by flash chromatography. The major diastereomeric alcohol 8 was protected as the TBDPS group to provide the corresponding bis-silyl ether in 98% yield. Selective cleavage of the secondary TBS ether with a catalytic amount of DDO in 9:1 THF and water afforded the secondary alcohol in 93% yield. 11 Swern oxidation of this alcohol provided ketone 10 in 96% yield.

The synthesis of substrate 3 is outlined in Scheme 2. Installation of diene from ketone 10, required an olefin

4014 Org. Lett., Vol. 9, No. 20, 2007

^{(4) (}a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. **2006**, 45, 7086. (b) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S. Angew. Chem., Int. Ed. **2007**, 46, 3942. (c) Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J. Angew. Chem., Int. Ed. **2007**, 46, 4712.

^{(5) (}a) Zou, Y.; Chen, C.-H.; Taylor, C. D.; Foxman, B. M.; Snider, B. B. Org. Lett. 2007, 9, 1825. (b) Nicolaou, K. C.; Tang, Y.; Wang, J. Chem. Commun. 2007, 1922. (c) Kaliappan, K. P.; Ravikumar, V. Org. Lett. 2007, 9, 2417.

⁽⁶⁾ Li, P.; Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 9534.

^{(7) (}a) Srikrishna, A.; Hemamalini, P. *J. Org. Chem.* **1990**, *55*, 4883. (b) Weinges, K.; Reichert, H. *Synlett* **1991**, 785. (c) Weinges, K.; Reichert, H.; Huber-Patz, U.; Irngartinger, H. *Liebigs Ann. Chem.* **1993**, 403. (d) Weinges, K.; Reichert, H.; Braun, R. *Chem. Ber.* **1994**, *127*, 549.

⁽⁸⁾ Copper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. *Synlett* **1990**, 533.

^{(9) (}a) Petasis, N. A.; Bzowej, E. I. *J. Am. Chem. Soc.* 1990, *112*, 6392.
(b) Dollinger, L. M.; Ndakala, A. J.; Hasshemzadeh, M.; Wang, G.; Wang, Y.; Martinez, I.; Arcari, J. T.; Galluzzo, D. J.; Howell, A. R. *J. Org. Chem.* 1999, *64*, 7074.

⁽¹⁰⁾ Lambert, W. M.; Hanson, G. H.; Benayoud, F.; Burke, S. D. J. Org. Chem. **2005**, 70, 9382.

^{(11) (}a) Crouch, R. D. *Tetrahedron* **2004**, *60*, 5833. (b) Tanemura, K.; Suzuki, T.; Horaguchi, T. *J. Chem. Soc.*, *Perkin Trans. I* **1992**, 2997.

Scheme 2. Synthesis of Diels—Alder Substrate 3

with an E-configuration. The ketone carbonyl possesses an α-methylene group on each side and the steric differentiation is marginal. The presence of a ring junction methyl group may be utilized to build selectivity. Our initial attempt at selective olefination using Horner-Emmons olefination with lithium hexamethyldisilazide and triethyl phosphonoacetate provided only marginal selectivity (3:2, by ¹H NMR analysis) for the *E*-olefin. Thus, we relied upon asymmetric olefination with a chiral phosphonoacetate reagent 11.12 Chiral phosphonate 11 was synthesized from transesterification of trimethylphosphonoacetate with (+)-phenylnormenthol.¹³ The Horner-Emmons reaction of 10 with chiral phosphonoacetate at -78 to -20 °C furnished a mixture (3.2:1 by ¹H NMR analysis) of the corresponding unsaturated E- and Z-esters in 93% yield. The E,Z mixture can be separated by flash chromatography on silica gel with 10% Et₂O in hexanes as the eluent. DIBAL reduction of the E-unsaturated ester afforded the desired allylic alcohol 12 in 86% yield. The chiral ligand, (+)-phenylnormenthol, was recovered in 95% yield. The protection of the allylic alcohol 12 as THP ether followed by removal of the TBDPS group with TBAF in THF generated alcohol 13 in 99% yield over 2 steps. Alcohol 13 was subjected to a Swern oxidation to provide the corresponding aldehyde. Horner-Emmons olefination with triethylphosphonoacetate furnished the dienophile moiety as a mixture (5:1) of E/Z-unsaturated esters. Removal of the THP group with camphorsulfonic acid in EtOH afforded alcohol 14 in 65% overall yield. Alcohol 14 was converted to the Diels-Alder substrate 3 in two steps involving (1)

Dess—Martin oxidation of the allylic alcohol to the corresponding aldehyde and (2) Wittig olefination of the aldehyde at -78 °C for 30 min. Triene derivative 3 was obtained in 77% yield over 2 steps as an inseparable mixture (1:1) of E/Z enol ethers. This mixture was utilized for preliminary investigation of the intramolecular Diels—Alder reaction.

Scheme 3. The Intramolecular Diels-Alder Reaction

As shown in Scheme 3, triene 3 was then subjected to a thermal intramolecular Diels—Alder reaction. A dilute solution of substrate 3 in chlorobenzene (0.005 M) in the presence of a catalytic amount of 2,6-di-*tert*-butyl-4-methylphenol (BHT) as the radical inhibitor¹⁴ was heated in a sealed tube at 200 °C for 2 h. The reaction was cooled to 23 °C, solvent was evaporated, and silica gel chromatography provided the Diels—Alder product 2 as a single isomer in 39% isolated yield. The corresponding *Z*-enol ether (3-*Z*) was recovered in 38% isolated yield. As shown in Scheme 3, the *E*-enol ether substrate (3-*E*) successfully underwent a Diels—Alder reaction to provide the oxatetracyclic core 2. The corresponding *Z*-enol ether (3-*Z*) did not provide the Diels—Alder product, presumably due to the developing nonbonded

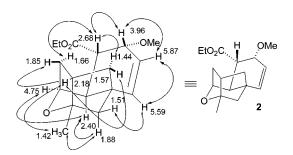


Figure 2. The NOESY of compound 2.

Org. Lett., Vol. 9, No. 20, **2007**

^{(12) (}a) Hatakeyama Satoh, K.; Sakurai, K.; Takano, S. *Tetrahedron Lett.* **1987**, 28, 2713. (b) Gais, H.-J.; Schmiedl, G.; Ossenkamp, R. K. L. *Liebigs Ann.* **1997**, 2419.

⁽¹³⁾ Refluxing a solution of (+)-phenylnormenthol (1 equiv), trimethylphosphonoacetate (3 equiv), and DMAP (0.3 equiv) in toluene for 3 days provided 11 in 99% yield.

interactions between the terminal methoxy group and one of the methylene hydrogens on the bicyclic ring. The stereochemistry of oxatetracyclic core **2** was confirmed by extensive NMR experiments (¹H, ¹³C, COSY, NOESY, HMQC, HMBC). The results of the 2-D NMR experiments (NOESY) are summarized in Figure 2. The observed NOESY among the protons are consistent with the assigned stereochemistry of structure **2**.

In summary, an enantioselective synthesis of the oxatetracyclic core of (-)-platensimycin has been achieved using an intramolecular Diels-Alder reaction. Further optimiza-

tions of the Diels-Alder substrate, reaction conditions, and completion of the total synthesis are currently in progress.

Acknowledgment. Financial support of this work was provided in part by the National Institutes of Health and Purdue University.

Supporting Information Available: Experimental procedures, spectral data, copies of ¹H NMR, ¹³C NMR, and NOESY spectra for compounds **2**–**3**, **3**-*Z*, **7**–**10**, and **12**–**14**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL701783Z

4016 Org. Lett., Vol. 9, No. 20, 2007

^{(14) (}a) Coppinger, G. M. J. Am. Chem. Soc. **1964**, 86, 4385. (b) Wong, L. S.-M.; Sherburn, M. S. Org. Lett. **2003**, 5, 3603.